Installment Loans

Lecture 6 Section 10.4

Robb T. Koether

Hampden-Sydney College

Fri, Jan 26, 2018

Installment Loans

2 Examples

Assignment

Outline

Installment Loans

- 2 Examples
- Assignment

Installment Loans

Definition (Installment Loan)

With an installment loan, the borrower pays back the loan through regular, equal payments (usually monthly). For each payment,

- The interest rate is applied to the outstanding balance at the end of the payment period.
- The interest is added to the outstanding balance.
- And the payment is subtracted from the outstanding balance, producing the new balance to be carried over to the next payment period.
- In order to pay the loan off, the payments must be greater than the interest earned between payments.
- The greater the difference, the faster the loan is paid off.

 Mathematically, this is exactly the same as drawing down an annuity.

- Mathematically, this is exactly the same as drawing down an annuity.
- Installment loan

- Mathematically, this is exactly the same as drawing down an annuity.
- Installment loan
 - You have "borrowed" a large sum of money from the bank (your loan).

- Mathematically, this is exactly the same as drawing down an annuity.
- Installment loan
 - You have "borrowed" a large sum of money from the bank (your loan).
 - You write monthly checks to the bank (your payments), paying down that amount.

- Mathematically, this is exactly the same as drawing down an annuity.
- Installment loan
 - You have "borrowed" a large sum of money from the bank (your loan).
 - You write monthly checks to the bank (your payments), paying down that amount.
- Annuity

- Mathematically, this is exactly the same as drawing down an annuity.
- Installment loan
 - You have "borrowed" a large sum of money from the bank (your loan).
 - You write monthly checks to the bank (your payments), paying down that amount.
- Annuity
 - The bank has "borrowed" a large sum of money from you (your savings account).

- Mathematically, this is exactly the same as drawing down an annuity.
- Installment loan
 - You have "borrowed" a large sum of money from the bank (your loan).
 - You write monthly checks to the bank (your payments), paying down that amount.
- Annuity
 - The bank has "borrowed" a large sum of money from you (your savings account).
 - The bank writes monthly checks to you (your withdrawals), paying down that amount.

Installment Loans

• Therefore, the formula for the payment *M* for an installment loan is exactly the same as the annuity formula for drawing down:

$$M = P\left(\frac{r/k}{1 - \left(1 + \frac{r}{k}\right)^{-kt}}\right),\,$$

where P is the principal (amount borrowed), r is the annual interest rate, k is the number of payments per year, and t is the number of years.

• Payments are usually monthly (k = 12), but they do not need to be.

Outline

Installment Loans

- 2 Examples
- Assignment

- \$4,550 is borrowed at 20% for 3 years, with payments made annually.
- Find the annual payment.
- Trace the balance over the three years as interest is applied and the payments are made.

Example (Three-year loan)

In this case, k = 1, so the payment is

$$M=\frac{Pr}{1-(1+r)^{-t}}$$

Example (Three-year loan)

In this case, k = 1, so the payment is

$$M = \frac{Pr}{1 - (1+r)^{-t}}$$
$$= \frac{(4550)(.20)}{1 - (1.20)^{-3}}$$

Example (Three-year loan)

In this case, k = 1, so the payment is

$$M = \frac{Pr}{1 - (1 + r)^{-t}}$$
$$= \frac{(4550)(.20)}{1 - (1.20)^{-3}}$$
$$= $2160.$$

	Starting				Ending
Year	Balance	Interest	Total	Payment	Balance
1	4,550	910	5,460	2,160	3,300

	Starting				Ending
Year	Balance	Interest	Total	Payment	Balance
1	4,550	910	5,460	2,160	3,300
2	3,300	660	3,960	2,160	1,800

	Starting				Ending
Year	Balance	Interest	Total	Payment	Balance
1	4,550	910	5,460	2,160	3,300
2	3,300	660	3,960	2,160	1,800
3	1,800	360	2,160	2,160	0

Example (Financing a Car)

- You would like to purchase a new car priced at \$25,000.
- You can put \$5,000 down and finance the rest at 6% for 60 months.
- Find
 - The monthly payment.
 - The total amount paid.
 - The total amount of interest paid.

Example (Home Mortgage)

- You would like to purchase a home for \$300,000.
- You can put \$60,000 down and finance the rest at 3.7% for 30 years, at 3.0% for 15 years, or at 2.9% for 10 years.
- Find
 - The monthly payment for each choice.
 - The total amount paid for each choice.
 - The total amount of interest paid for each choice.

Outline

Installment Loans

- 2 Examples
- Assignment

Assignment

Assignment

• Chapter 10: 57, 58, 59, 61, 62, 63.